Relations among spheroidal and spherical harmonics
Auteurs : Raybel García-Ancona, João Morais, R. Michael Porter
Résumé : A contragenic function in a domain $\Omega\subseteq\mathbf{R}^3$ is a reduced-quaternion-valued (i.e. the last coordinate function is zero) harmonic function, which is orthogonal in $L^2(\Omega)$ to all monogenic functions and their conjugates. The notion of contragenicity depends on the domain and thus is not a local property, in contrast to harmonicity and monogenicity. For spheroidal domains of arbitrary eccentricity, we relate standard orthogonal bases of harmonic and contragenic functions for one domain to another via computational formulas. This permits us to show that there exist nontrivial contragenic functions common to the spheroids of all eccentricities.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.