Stock Price Forecasting and Hypothesis Testing Using Neural Networks
Auteurs : Kerda Varaku
Résumé : In this work we use Recurrent Neural Networks and Multilayer Perceptrons to predict NYSE, NASDAQ and AMEX stock prices from historical data. We experiment with different architectures and compare data normalization techniques. Then, we leverage those findings to question the efficient-market hypothesis through a formal statistical test.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.