The Diversity-Innovation Paradox in Science

Auteurs : Bas Hofstra, Vivek V. Kulkarni, Sebastian Munoz-Najar Galvez, Bryan He, Dan Jurafsky, Daniel A. McFarland

Updated paper; tightened up terminology, added better theoretical explanation, tested for a mechanism in the updated paper, added robustness analyses, updated and improved metrics across the board
Licence : CC BY-NC-SA 4.0

Résumé : Prior work finds a diversity paradox: diversity breeds innovation, and yet, underrepresented groups that diversify organizations have less successful careers within them. Does the diversity paradox hold for scientists as well? We study this by utilizing a near-population of ~1.2 million US doctoral recipients from 1977-2015 and following their careers into publishing and faculty positions. We use text analysis and machine learning to answer a series of questions: How do we detect scientific innovations? Are underrepresented groups more likely to generate scientific innovations? And are the innovations of underrepresented groups adopted and rewarded? Our analyses show that underrepresented groups produce higher rates of scientific novelty. However, their novel contributions are devalued and discounted: e.g., novel contributions by gender and racial minorities are taken up by other scholars at lower rates than novel contributions by gender and racial majorities, and equally impactful contributions of gender and racial minorities are less likely to result in successful scientific careers than for majority groups. These results suggest there may be unwarranted reproduction of stratification in academic careers that discounts diversity's role in innovation and partly explains the underrepresentation of some groups in academia.

Soumis à arXiv le 04 Sep. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.