Advances in Computer-Aided Diagnosis of Diabetic Retinopathy
Auteurs : Saket S. Chaturvedi, Kajol Gupta, Vaishali Ninawe, Prakash S. Prasad
Résumé : Diabetic Retinopathy is a critical health problem influences 100 million individuals worldwide, and these figures are expected to rise, particularly in Asia. Diabetic Retinopathy is a chronic eye disease which can lead to irreversible vision loss. Considering the visual complexity of retinal images, the early-stage diagnosis of Diabetic Retinopathy can be challenging for human experts. However, Early detection of Diabetic Retinopathy can significantly help to avoid permanent vision loss. The capability of computer-aided detection systems to accurately and efficiently detect the diabetic retinopathy had popularized them among researchers. In this review paper, the literature search was conducted on PubMed, Google Scholar, IEEE Explorer with a focus on the computer-aided detection of Diabetic Retinopathy using either of Machine Learning or Deep Learning algorithms. Moreover, this study also explores the typical methodology utilized for the computer-aided diagnosis of Diabetic Retinopathy. This review paper is aimed to direct the researchers about the limitations of current methods and identify the specific areas in the field to boost future research.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.