Minimax D-optimal designs for multivariate regression models with multi-factors

Auteurs : Lucy L. Gao, Julie Zhou

Résumé : In multi-response regression models, the error covariance matrix is never known in practice. Thus, there is a need for optimal designs which are robust against possible misspecification of the error covariance matrix. In this paper, we approximate the error covariance matrix with a neighbourhood of covariance matrices, in order to define minimax D-optimal designs which are robust against small departures from an assumed error covariance matrix. It is well known that the optimization problems associated with robust designs are non-convex, which makes it challenging to construct robust designs analytically or numerically, even for one-response regression models. We show that the objective function for the minimax D-optimal design is a difference of two convex functions. This leads us to develop a flexible algorithm for computing minimax D-optimal designs, which can be applied to any multi-response model with a discrete design space. We also derive several theoretical results for minimax D-optimal designs, including scale invariance and reflection symmetry.

Soumis à arXiv le 02 Oct. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.