Meta Module Network for Compositional Visual Reasoning

Auteurs : Wenhu Chen, Zhe Gan, Linjie Li, Yu Cheng, William Wang, Jingjing Liu

Accepted to WACV 21 (Oral)

Résumé : Neural Module Network (NMN) exhibits strong interpretability and compositionality thanks to its handcrafted neural modules with explicit multi-hop reasoning capability. However, most NMNs suffer from two critical drawbacks: 1) scalability: customized module for specific function renders it impractical when scaling up to a larger set of functions in complex tasks; 2) generalizability: rigid pre-defined module inventory makes it difficult to generalize to unseen functions in new tasks/domains. To design a more powerful NMN architecture for practical use, we propose Meta Module Network (MMN) centered on a novel meta module, which can take in function recipes and morph into diverse instance modules dynamically. The instance modules are then woven into an execution graph for complex visual reasoning, inheriting the strong explainability and compositionality of NMN. With such a flexible instantiation mechanism, the parameters of instance modules are inherited from the central meta module, retaining the same model complexity as the function set grows, which promises better scalability. Meanwhile, as functions are encoded into the embedding space, unseen functions can be readily represented based on its structural similarity with previously observed ones, which ensures better generalizability. Experiments on GQA and CLEVR datasets validate the superiority of MMN over state-of-the-art NMN designs. Synthetic experiments on held-out unseen functions from GQA dataset also demonstrate the strong generalizability of MMN. Our code and model are released in Github https://github.com/wenhuchen/Meta-Module-Network.

Soumis à arXiv le 08 Oct. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.