Time Series Vector Autoregression Prediction of the Ecological Footprint based on Energy Parameters
Auteurs : Radmila Janković, Ivan Mihajlović, Alessia Amelio
Résumé : Sustainability became the most important component of world development, as countries worldwide fight the battle against the climate change. To understand the effects of climate change, the ecological footprint, along with the biocapacity should be observed. The big part of the ecological footprint, the carbon footprint, is most directly associated with the energy, and specifically fuel sources. This paper develops a time series vector autoregression prediction model of the ecological footprint based on energy parameters. The objective of the paper is to forecast the EF based solely on energy parameters and determine the relationship between the energy and the EF. The dataset included global yearly observations of the variables for the period 1971-2014. Predictions were generated for every variable that was used in the model for the period 2015-2024. The results indicate that the ecological footprint of consumption will continue increasing, as well as the primary energy consumption from different sources. However, the energy consumption from coal sources is predicted to have a declining trend.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.