Can You Really Backdoor Federated Learning?

Auteurs : Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, H. Brendan McMahan

To appear at the 2nd International Workshop on Federated Learning for Data Privacy and Confidentiality at NeurIPS 2019

Résumé : The decentralized nature of federated learning makes detecting and defending against adversarial attacks a challenging task. This paper focuses on backdoor attacks in the federated learning setting, where the goal of the adversary is to reduce the performance of the model on targeted tasks while maintaining good performance on the main task. Unlike existing works, we allow non-malicious clients to have correctly labeled samples from the targeted tasks. We conduct a comprehensive study of backdoor attacks and defenses for the EMNIST dataset, a real-life, user-partitioned, and non-iid dataset. We observe that in the absence of defenses, the performance of the attack largely depends on the fraction of adversaries present and the "complexity'' of the targeted task. Moreover, we show that norm clipping and "weak'' differential privacy mitigate the attacks without hurting the overall performance. We have implemented the attacks and defenses in TensorFlow Federated (TFF), a TensorFlow framework for federated learning. In open-sourcing our code, our goal is to encourage researchers to contribute new attacks and defenses and evaluate them on standard federated datasets.

Soumis à arXiv le 18 Nov. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.