A Survey of Game Theoretic Approaches for Adversarial Machine Learning in Cybersecurity Tasks

Auteurs : Prithviraj Dasgupta, Joseph B. Collins

AI Magazine, 40(2), 31-43 (2019)
13 pages, 2 figures, 1 table

Résumé : Machine learning techniques are currently used extensively for automating various cybersecurity tasks. Most of these techniques utilize supervised learning algorithms that rely on training the algorithm to classify incoming data into different categories, using data encountered in the relevant domain. A critical vulnerability of these algorithms is that they are susceptible to adversarial attacks where a malicious entity called an adversary deliberately alters the training data to misguide the learning algorithm into making classification errors. Adversarial attacks could render the learning algorithm unsuitable to use and leave critical systems vulnerable to cybersecurity attacks. Our paper provides a detailed survey of the state-of-the-art techniques that are used to make a machine learning algorithm robust against adversarial attacks using the computational framework of game theory. We also discuss open problems and challenges and possible directions for further research that would make deep machine learning-based systems more robust and reliable for cybersecurity tasks.

Soumis à arXiv le 04 Déc. 2019

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.