Citation Recommendation: Approaches and Datasets
Auteurs : Michael Färber, Adam Jatowt
Résumé : Citation recommendation describes the task of recommending citations for a given text. Due to the overload of published scientific works in recent years on the one hand, and the need to cite the most appropriate publications when writing scientific texts on the other hand, citation recommendation has emerged as an important research topic. In recent years, several approaches and evaluation data sets have been presented. However, to the best of our knowledge, no literature survey has been conducted explicitly on citation recommendation. In this article, we give a thorough introduction into automatic citation recommendation research. We then present an overview of the approaches and data sets for citation recommendation and identify differences and commonalities using various dimensions. Last but not least, we shed light on the evaluation methods, and outline general challenges in the evaluation and how to meet them. We restrict ourselves to citation recommendation for scientific publications, as this document type has been studied the most in this area. However, many of the observations and discussions included in this survey are also applicable to other types of text, such as news articles and encyclopedic articles.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.