QRMine: A python package for triangulation in Grounded Theory
Auteurs : Bell Raj Eapen, Norm Archer, Kamran Sartipi
Résumé : Grounded theory (GT) is a qualitative research method for building theory grounded in data. GT uses textual and numeric data and follows various stages of coding or tagging data for sense-making, such as open coding and selective coding. Machine Learning (ML) techniques, including natural language processing (NLP), can assist the researchers in the coding process. Triangulation is the process of combining various types of data. ML can facilitate deriving insights from numerical data for corroborating findings from the textual interview transcripts. We present an open-source python package (QRMine) that encapsulates various ML and NLP libraries to support coding and triangulation in GT. QRMine enables researchers to use these methods on their data with minimal effort. Researchers can install QRMine from the python package index (PyPI) and can contribute to its development. We believe that the concept of computational triangulation will make GT relevant in the realm of big data.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.