A Blockchain-based Decentralized Federated Learning Framework with Committee Consensus

Auteurs : Yuzheng Li, Chuan Chen, Nan Liu, Huawei Huang, Zibin Zheng, Qiang Yan

7 pages, 4 figures and 1 table

Résumé : Federated learning has been widely studied and applied to various scenarios. In mobile computing scenarios, federated learning protects users from exposing their private data, while cooperatively training the global model for a variety of real-world applications. However, the security of federated learning is increasingly being questioned, due to the malicious clients or central servers' constant attack to the global model or user privacy data. To address these security issues, we proposed a decentralized federated learning framework based on blockchain, i.e., a Blockchain-based Federated Learning framework with Committee consensus (BFLC). The framework uses blockchain for the global model storage and the local model update exchange. To enable the proposed BFLC, we also devised an innovative committee consensus mechanism, which can effectively reduce the amount of consensus computing and reduce malicious attacks. We then discussed the scalability of BFLC, including theoretical security, storage optimization, and incentives. Finally, we performed experiments using real-world datasets to verify the effectiveness of the BFLC framework.

Soumis à arXiv le 02 Avr. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.