Automated Smartphone based System for Diagnosis of Diabetic Retinopathy
Auteurs : Misgina Tsighe Hagos, Shri Kant, Surayya Ado Bala
Résumé : Early diagnosis of diabetic retinopathy for treatment of the disease has been failing to reach diabetic people living in rural areas. Shortage of trained ophthalmologists, limited availability of healthcare centers, and expensiveness of diagnostic equipment are among the reasons. Although many deep learning-based automatic diagnosis of diabetic retinopathy techniques have been implemented in the literature, these methods still fail to provide a point-of-care diagnosis. This raises the need for an independent diagnostic of diabetic retinopathy that can be used by a non-expert. Recently the usage of smartphones has been increasing across the world. Automated diagnoses of diabetic retinopathy can be deployed on smartphones in order to provide an instant diagnosis to diabetic people residing in remote areas. In this paper, inception based convolutional neural network and binary decision tree-based ensemble of classifiers have been proposed and implemented to detect and classify diabetic retinopathy. The proposed method was further imported into a smartphone application for mobile-based classification, which provides an offline and automatic system for diagnosis of diabetic retinopathy.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.