The Role of Stem Noise in Visual Perception and Image Quality Measurement
Auteurs : Arash Ashtari
Résumé : This paper considers reference free quality assessment of distorted and noisy images. Specifically, it considers the first and second order statistics of stem noise that can be evaluated given any image. In the research field of Image quality Assessment (IQA), the stem noise is defined as the input of an Auto Regressive (AR) process, from which a low-energy and de-correlated version of the image can be recovered. To estimate the AR model parameters and associated stem noise energy, the Yule-walker equations are used such that the accompanying Auto Correlation Function (ACF) coefficients can be treated as model parameters for image reconstruction. To characterize systematic signal dependent and signal independent distortions, the mean and variance of stem noise can be evaluated over the image. Crucially, this paper shows that these statistics have a predictive validity in relation to human ratings of image quality. Furthermore, under certain kinds of image distortion, stem noise statistics show very significant correlations with established measures of image quality.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.