Managing COVID-19 Pandemic without Destructing the Economy
Auteurs : David Gershon, Alexander Lipton, Hagai Levine
Résumé : We analyze an approach to managing the COVID-19 pandemic without shutting down the economy while staying within the capacity of the healthcare system. We base our analysis on a detailed heterogeneous epidemiological model, which takes into account different population groups and phases of the disease, including incubation, infection period, hospitalization, and treatment in the intensive care unit (ICU). We model the healthcare capacity as the total number of hospital and ICU beds for the whole country. We calibrate the model parameters to data reported in several recent research papers. For high- and low-risk population groups, we calculate the number of total and intensive care hospitalizations, and deaths as functions of time. The main conclusion is that countries, which enforce reasonable hygienic measures on time can avoid lockdowns throughout the pandemic provided that the number of spare ICU beds per million is above the threshold of about 100. In countries where the total number of ICU beds is below this threshold, a limited period quarantine to specific high-risk groups of the population suffices. Furthermore, in the case of an inadequate capacity of the healthcare system, we incorporate a feedback loop and demonstrate that quantitative impact of the lack of ICU units on the death curve. In the case of inadequate ICU beds, full- and partial-quarantine scenarios outcomes are almost identical, making it unnecessary to shut down the whole economy. We conclude that only a limited-time quarantine of the high-risk group might be necessary, while the rest of the economy can remain operational.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.