Liquid Time-constant Networks

Auteurs : Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, Radu Grosu

32 pages, 9 figures
Licence : CC BY 4.0

Résumé : We introduce a new class of time-continuous recurrent neural network models. Instead of declaring the nonlinearity of a learning system by neurons, we impose specialized nonlinearities on the network connections. The obtained models realize dynamical systems with varying (i.e., \emph{liquid}) time-constants coupled to their hidden state, and outputs being computed by numerical differential equation solvers. These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations, and give rise to improved performance on time-series prediction tasks. To demonstrate these properties, we first take a theoretical approach to find bounds over their dynamics, and compute their expressive power by the \emph{trajectory length} measure in a latent trajectory representation space. We then conduct a series of time-series prediction experiments to manifest the approximation capability of Liquid Time-Constant Networks (LTCs) compared to classical and modern RNNs.

Soumis à arXiv le 08 Jui. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.