Quick Lists: Enriched Playlist Embeddings for Future Playlist Recommendation
Auteurs : Brett Vintch
Résumé : Recommending playlists to users in the context of a digital music service is a difficult task because a playlist is often more than the mere sum of its parts. We present a novel method for generating playlist embeddings that are invariant to playlist length and sensitive to local and global track ordering. The embeddings also capture information about playlist sequencing, and are enriched with side information about the playlist user. We show that these embeddings are useful for generating next-best playlist recommendations, and that side information can be used for the cold start problem.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.