Mobile Robot Path Planning in Dynamic Environments: A Survey

Auteurs : Kuanqi Cai (Fellow, IEEE), Chaoqun Wang (Fellow, IEEE), Jiyu Cheng (Fellow, IEEE), Clarence W De Silva (Fellow, IEEE), Max Q. -H. Meng (Fellow, IEEE)

Instrumentation,2019,6(02):90-100

Résumé : There are many challenges for robot navigation in densely populated dynamic environments. This paper presents a survey of the path planning methods for robot navigation in dense environments. Particularly, the path planning in the navigation framework of mobile robots is composed of global path planning and local path planning, with regard to the planning scope and the executability. Within this framework, the recent progress of the path planning methods is presented in the paper, while examining their strengths and weaknesses. Notably, the recently developed Velocity Obstacle method and its variants that serve as the local planner are analyzed comprehensively. Moreover, as a model-free method that is widely used in current robot applications, the reinforcement learning-based path planning algorithms are detailed in this paper.

Soumis à arXiv le 25 Jui. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.