Modeling Thermodynamic Trends of Rotating Detonation Engines
Auteurs : James Koch, J. Nathan Kutz
Résumé : The formation of a number of co- and counter-rotating coherent combustion wave fronts is the hallmark feature of the Rotating Detonation Engine (RDE). The engineering implications of wave topology are not well understood nor quantified, especially with respect to parametric changes in combustor geometry, propellant chemistry, and injection and mixing schemes. In this article, a modeling framework that relates the time and spacial scales of the RDE to engineering performance metrics is developed and presented. The model is built under assumptions of backpressure-insensitivity and nominally choked gaseous propellant injection. The Euler equations of inviscid, compressible fluid flow in one dimension are adapted to model the combustion wave dynamics along the circumference of an annular-type rotating detonation engine. These adaptations provide the necessary mass and energy input and output channels to shape the traveling wave fronts and decaying tails. The associated unit processes of injection, mixing, combustion, and exhaust are all assigned representative time scales necessary for successful wave propagation. We find that the separation, or lack of, these time scales are responsible for the behavior of the system, including wave co- and counter-propagation and bifurcations between these regimes and wave counts. Furthermore, as there is no imposition of wave topology, the model output is used to estimate the net available mechanical work output and thermodynamic efficiency from the closed trajectories through pressure-volume and temperature-entropy spaces. These metrics are investigated with respect to variation in the characteristic scales for the RDE unit physical processes.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.