Smart Irrigation IoT Solution using Transfer Learning for Neural Networks
Auteurs : A. Risheh, A. Jalili, E. Nazerfard
Résumé : In this paper we develop a reliable system for smart irrigation of greenhouses using artificial neural networks, and an IoT architecture. Our solution uses four sensors in different layers of soil to predict future moisture. Using a dataset we collected by running experiments on different soils, we show high performance of neural networks compared to existing alternative method of support vector regression. To reduce the processing power of neural network for the IoT edge devices, we propose using transfer learning. Transfer learning also speeds up training performance with small amount of training data, and allows integrating climate sensors to a pre-trained model, which are the other two challenges of smart irrigation of greenhouses. Our proposed IoT architecture shows a complete solution for smart irrigation.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.