Electrocardiogram Heartbeat Classification Using Convolutional Neural Networks for the Detection of Cardiac Arrhythmia

Auteurs : Mohammad Mahmudur Rahman Khan, Md. Abu Bakr Siddique, Shadman Sakib, Anas Aziz, Abyaz Kader Tanzeem, Ziad Hossain

2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)
arXiv: 2010.04086v1 - DOI (physics.med-ph)
4th International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC 2020), IEEE, 7-9 October 2020, TamilNadu, INDIA
Licence : CC BY-NC-SA 4.0

Résumé : The classification of the electrocardiogram (ECG) signal has a vital impact on identifying heart-related diseases. This can ensure the premature finding of heart disease and the proper selection of the patient's customized treatment. However, the detection of arrhythmia is a challenging task to perform manually. This justifies the necessity of a technique for automatic detection of abnormal heart signals. Therefore, our work is based on the classification of five classes of ECG arrhythmic signals from Physionet's MIT-BIH Arrhythmia Dataset. Artificial Neural Networks (ANN) have demonstrated significant success in ECG signal classification. Our proposed model is a Convolutional Neural Network (CNN) customized to categorize the ECG signals. Our result testifies that the planned CNN model can successfully categorize arrhythmia with an overall accuracy of 95.2%. The average precision and recall of the proposed model are 95.2% and 95.4%, respectively. This model can effectively be used to detect irregularities of heart rhythm at an early stage.

Soumis à arXiv le 05 Oct. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.