The infrared-radio correlation of star-forming galaxies is strongly M$_{\star}$-dependent but nearly redshift-invariant since z$\sim$4
Auteurs : I. Delvecchio, E. Daddi, M. T. Sargent, M. J. Jarvis, D. Elbaz, S. Jin, D. Liu, I. H. Whittam, H. Algera, R. Carraro, C. D'Eugenio, J. Delhaize, B. Kalita, S. Leslie, D. Cs. Molnar, M. Novak, I. Prandoni, V. Smolcic, Y. Ao, M. Aravena, F. Bournaud, J. D. Collier, S. M. Randriamampandry, Z. Randriamanakoto, G. Rodighiero, J. Schober, S. V. White, G. Zamorani
Résumé : Several works in the past decade have used the ratio between total (rest 8-1000$\mu$m) infrared and radio (rest 1.4 GHz) luminosity in star-forming galaxies (q$_{TIR}$), often referred to as the "infrared-radio correlation" (IRRC), to calibrate radio emission as a star formation rate (SFR) indicator. Previous studies constrained the evolution of q$_{TIR}$ with redshift, finding a mild but significant decline, that is yet to be understood. For the first time, we re-calibrate q$_{TIR}$ as a function of both stellar mass (M$_{*}$) and redshift, starting from an M$_{*}$-selected sample of >400,000 star-forming galaxies in the COSMOS field, identified via (NUV-r)/(r-J) colours, at redshifts 0.1<z<4.5. Within each (M$_{*}$,z) bin, we stack the deepest available infrared/sub-mm and radio images. We fit the stacked IR spectral energy distributions with typical star-forming galaxy and IR-AGN templates, and carefully remove radio AGN candidates via a recursive approach. We find that the IRRC evolves primarily with M$_{*}$, with more massive galaxies displaying systematically lower q$_{TIR}$. A secondary, weaker dependence on redshift is also observed. The best-fit analytical expression is the following: q$_{TIR}$(M$_{*}$,z)=(2.646$\pm$0.024)$\times$(1+z)$^{(-0.023\pm0.008)}$-(0.148$\pm$0.013)$\times$($\log~M_{*}$/M$_{\odot}$-10). Adding the UV dust-uncorrected contribution to the IR as a proxy for the total SFR, would further steepen the q$_{TIR}$ dependence on M$_{*}$. The lower IR/radio ratio in more massive galaxies could be possibly linked to higher SFR surface density, which induces larger cosmic-ray scale heights. Our findings highlight that using radio emission as a proxy for SFR requires novel M$_{*}$-dependent recipes, that will enable us to convert detections from future ultra deep radio surveys into accurate SFR measurements down to low-SFR, low-M$_{*}$ galaxies.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.