Improving Prediction of Real-Time Loneliness and Companionship Type Using Geosocial Features of Personal Smartphone Data

Auteurs : Congyu Wu, Amanda N. Barczyk, R. Cameron Craddock, Gabriella M. Harari, Edison Thomaz, Jason D. Shumake, Christopher G. Beevers, Samuel D. Gosling, David M. Schnyer

Résumé : Loneliness is a widely affecting mental health symptom and can be mediated by and co-vary with patterns of social exposure. Using momentary survey and smartphone sensing data collected from 129 Android-using college student participants over three weeks, we (1) investigate and uncover the relations between momentary loneliness experience and companionship type and (2) propose and validate novel geosocial features of smartphone-based Bluetooth and GPS data for predicting loneliness and companionship type in real time. We base our features on intuitions characterizing the quantity and spatiotemporal predictability of an individual's Bluetooth encounters and GPS location clusters to capture personal significance of social exposure scenarios conditional on their temporal distribution and geographic patterns. We examine our features' statistical correlation with momentary loneliness through regression analyses and evaluate their predictive power using a sliding window prediction procedure. Our features achieved significant performance improvement compared to baseline for predicting both momentary loneliness and companionship type, with the effect stronger for the loneliness prediction task. As such we recommend incorporation and further evaluation of our geosocial features proposed in this study in future mental health sensing and context-aware computing applications.

Soumis à arXiv le 19 Oct. 2020

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.