Recurrent Neural Networks for video object detection
Auteurs : Ahmad B Qasim, Arnd Pettirsch
Résumé : There is lots of scientific work about object detection in images. For many applications like for example autonomous driving the actual data on which classification has to be done are videos. This work compares different methods, especially those which use Recurrent Neural Networks to detect objects in videos. We differ between feature-based methods, which feed feature maps of different frames into the recurrent units, box-level methods, which feed bounding boxes with class probabilities into the recurrent units and methods which use flow networks. This study indicates common outcomes of the compared methods like the benefit of including the temporal context into object detection and states conclusions and guidelines for video object detection networks.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.