Singularity of random symmetric matrices revisited
Auteurs : Marcelo Campos, Matthew Jenssen, Marcus Michelen, Julian Sahasrabudhe
Résumé : Let $M_n$ be drawn uniformly from all $\pm 1$ symmetric $n \times n$ matrices. We show that the probability that $M_n$ is singular is at most $\exp(-c(n\log n)^{1/2})$, which represents a natural barrier in recent approaches to this problem. In addition to improving on the best-known previous bound of Campos, Mattos, Morris and Morrison of $\exp(-c n^{1/2})$ on the singularity probability, our method is different and considerably simpler.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.