Learning from Simulation, Racing in Reality
Auteurs : Eugenio Chisari, Alexander Liniger, Alisa Rupenyan, Luc Van Gool, John Lygeros
Résumé : We present a reinforcement learning-based solution to autonomously race on a miniature race car platform. We show that a policy that is trained purely in simulation using a relatively simple vehicle model, including model randomization, can be successfully transferred to the real robotic setup. We achieve this by using novel policy output regularization approach and a lifted action space which enables smooth actions but still aggressive race car driving. We show that this regularized policy does outperform the Soft Actor Critic (SAC) baseline method, both in simulation and on the real car, but it is still outperformed by a Model Predictive Controller (MPC) state of the art method. The refinement of the policy with three hours of real-world interaction data allows the reinforcement learning policy to achieve lap times similar to the MPC controller while reducing track constraint violations by 50%.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.