Pre-trained language models as knowledge bases for Automotive Complaint Analysis
Auteurs : V. D. Viellieber, M. Aßenmacher
Résumé : Recently it has been shown that large pre-trained language models like BERT (Devlin et al., 2018) are able to store commonsense factual knowledge captured in its pre-training corpus (Petroni et al., 2019). In our work we further evaluate this ability with respect to an application from industry creating a set of probes specifically designed to reveal technical quality issues captured as described incidents out of unstructured customer feedback in the automotive industry. After probing the out-of-the-box versions of the pre-trained models with fill-in-the-mask tasks we dynamically provide it with more knowledge via continual pre-training on the Office of Defects Investigation (ODI) Complaints data set. In our experiments the models exhibit performance regarding queries on domain-specific topics compared to when queried on factual knowledge itself, as Petroni et al. (2019) have done. For most of the evaluated architectures the correct token is predicted with a $Precision@1$ ($P@1$) of above 60\%, while for $P@5$ and $P@10$ even values of well above 80\% and up to 90\% respectively are reached. These results show the potential of using language models as a knowledge base for structured analysis of customer feedback.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.