GPU Accelerated Exhaustive Search for Optimal Ensemble of Black-Box Optimization Algorithms
Auteurs : Jiwei Liu, Bojan Tunguz, Gilberto Titericz
Résumé : Black-box optimization is essential for tuning complex machine learning algorithms which are easier to experiment with than to understand. In this paper, we show that a simple ensemble of black-box optimization algorithms can outperform any single one of them. However, searching for such an optimal ensemble requires a large number of experiments. We propose a Multi-GPU-optimized framework to accelerate a brute force search for the optimal ensemble of black-box optimization algorithms by running many experiments in parallel. The lightweight optimizations are performed by CPU while expensive model training and evaluations are assigned to GPUs. We evaluate 15 optimizers by training 2.7 million models and running 541,440 optimizations. On a DGX-1, the search time is reduced from more than 10 days on two 20-core CPUs to less than 24 hours on 8-GPUs. With the optimal ensemble found by GPU-accelerated exhaustive search, we won the 2nd place of NeurIPS 2020 black-box optimization challenge.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.