Hard Problem and Free Will: an information-theoretical approach
Auteurs : Giacomo Mauro D'Ariano, Federico Faggin
Résumé : We explore definite theoretical assertions about consciousness, starting from a non-reductive psycho-informational solution of David Chalmers's 'hard problem', based on the hypothesis that a fundamental property of 'information' is its experience by the supporting 'system'. The kind of information involved in consciousness needs to be quantum for multiple reasons, including its intrinsic privacy and its power of building up thoughts by entangling qualia states. As a result we reach a quantum-information-based panpsychism, with classical physics supervening on quantum physics, quantum physics supervening on quantum information, and quantum information supervening on consciousness. We then argue that the internally experienced quantum state, since it corresponds to a definite experience-not to a random choice-must be pure, and we call it ontic, in contrast with the state predictable from the outside (i.e. the state describing the knowledge of the experience from the point of view of an external observer) which we call epistemic and is generally mixed. Purity of the ontic state requires an evolution that is purity preserving, namely a so-called 'atomic' quantum operation. The latter is generally probabilistic, and its particular outcome is interpreted as the free will, which is unpredictable even in principle since quantum probability cannot be interpreted as lack of knowledge. The same purity of state and evolution allows solving the 'combination problem' of panpsychism. Quantum state evolution accounts for a short-term buffer of experience and contains itself quantum-to-classical and classical-to-quantum information transfers. Long term memory, on the other hand, is classical, and needs memorization and recall processes that are quantum-to-classical and classical-to-quantum, respectively...
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.