Deep Reinforcement Learning for Active High Frequency Trading
Auteurs : Antonio Briola, Jeremy Turiel, Riccardo Marcaccioli, Tomaso Aste
Résumé : We introduce the first end-to-end Deep Reinforcement Learning based framework for active high frequency trading. We train DRL agents to to trade one unit of Intel Corporation stocks by employing the Proximal Policy Optimization algorithm. The training is performed on three contiguous months of high frequency Limit Order Book data. In order to maximise the signal to noise ratio in the training data, we compose the latter by only selecting training samples with largest price changes. The test is then carried out on the following month of data. Hyperparameters are tuned using the Sequential Model Based Optimization technique. We consider three different state characterizations, which differ in the LOB-based meta-features they include. Agents learn trading strategies able to produce stable positive returns in spite of the highly stochastic and non-stationary environment, which is remarkable itself. Analysing the agents' performances on the test data, we argue that the agents are able to create a dynamic representation of the underlying environment highlighting the occasional regularities present in the data and exploiting them to create long-term profitable trading strategies.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.