Towards a Standard Feature Set for Network Intrusion Detection System Datasets
Auteurs : Mohanad Sarhan, Siamak Layeghy, Marius Portmann
Résumé : Network Intrusion Detection Systems (NIDSs) are important tools for the protection of computer networks against increasingly frequent and sophisticated cyber attacks. Recently, a lot of research effort has been dedicated to the development of Machine Learning (ML) based NIDSs. As in any ML-based application, the availability of high-quality datasets is critical for the training and evaluation of ML-based NIDS. One of the key problems with the currently available datasets is the lack of a standard feature set. The use of a unique and proprietary set of features for each of the publicly available datasets makes it virtually impossible to compare the performance of ML-based traffic classifiers on different datasets, and hence to evaluate the ability of these systems to generalise across different network scenarios. To address that limitation, this paper proposes and evaluates standard NIDS feature sets based on the NetFlow network meta-data collection protocol and system. We evaluate and compare two NetFlow-based feature set variants, a version with 12 features, and another one with 43 features.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.