Analysis of the Effectiveness of Face-Coverings on the Death Ratio of COVID-19 Using Machine Learning
Auteurs : Ali Lafzi, Miad Boodaghi, Siavash Zamani, Niyousha Mohammadshafie, Veeraraghava Raju Hasti
Résumé : The recent outbreak of the COVID-19 led to the death of millions of people worldwide. To stave off the spread of the virus, the authorities in the US employed different strategies, including the mask mandate order issued by the states' governors. In the current work, we defined a parameter called the average death ratio as the monthly average of the number of daily deaths to the monthly average number of daily cases. We utilized survey data to quantify people's abidance by the mask mandate order. Additionally, we implicitly addressed the extent to which people abide by the mask mandate order that may depend on some parameters like population, income, and education level. Using different machine learning classification algorithms, we investigated how the decrease or increase in death ratio for the counties in the US West Coast correlates with the input parameters. The results showed that for most counties there, the mask mandate order decreased the death ratio reflecting the effectiveness of this preventive measure on the West Coast. Additionally, the changes in the death ratio demonstrated a noticeable correlation with the socio-economic condition of each county. Moreover, the results showed a promising classification accuracy score as high as around 90%.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.