Adaptive Optimization of Autonomous Vehicle Computational Resources for Performance and Energy Improvement
Auteurs : Saurabh Jambotkar, Longxiang Guo, Yunyi Jia
Résumé : Autonomous vehicles usually consume a large amount of computational power for their operations, especially for the tasks of sensing and perception with artificial intelligence algorithms. Such a computation may not only cost a significant amount of energy but also cause performance issues when the onboard computational resources are limited. To address this issue, this paper proposes an adaptive optimization method to online allocate the onboard computational resources of an autonomous vehicle amongst multiple vehicular subsystems depending on the contexts of the situations that the vehicle is facing. Different autonomous driving scenarios were designed to validate the proposed approach and the results showed that it could help improve the overall performance and energy consumption of autonomous vehicles compared to existing computational arrangement.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.