Fully general-relativistic simulations of isolated and binary strange quark stars
Auteurs : Zhenyu Zhu, Luciano Rezzolla
Résumé : The hypothesis that strange quark matter is the true ground state of matter has been investigated for almost four decades, but only a few works have explored the dynamics of binary systems of quark stars. This is partly due to the numerical challenges that need to be faced when modelling the large discontinuities at the surface of these stars. We here present a novel technique in which the EOS of a quark star is suitably rescaled to produce a smooth change of the specific enthalpy across a very thin crust. The introduction of the crust has been carefully tested by considering the oscillation properties of isolated quark stars, showing that the response of the simulated quark stars matches accurately the perturbative predictions. Using this technique, we have carried out the first fully general-relativistic simulations of the merger of quark-star binaries finding several important differences between quark-star binaries and hadronic-star binaries with the same mass and comparable tidal deformability. In particular, we find that dynamical mass loss is significantly suppressed in quark-star binaries. In addition, quark-star binaries have merger and post-merger frequencies that obey the same quasi-universal relations derived from hadron stars if expressed in terms of the tidal deformability, but not when expressed in terms of the average stellar compactness. Hence, it may be difficult to distinguish the two classes of stars if no information on the stellar radius is available. Finally, differences are found in the distributions in velocity and entropy of the ejected matter, for which quark-stars have much smaller tails. Whether these differences in the ejected matter will leave an imprint in the electromagnetic counterpart and nucleosynthetic yields remains unclear, calling for the construction of an accurate model for the evaporation of the ejected quarks into nucleons.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.