A Ransomware Classification Framework Based on File-Deletion and File-Encryption Attack Structures

Auteurs : Aaron Zimba, Mumbi Chishimba, Sipiwe Chihana

Licence : CC BY 4.0

Résumé : Ransomware has emerged as an infamous malware that has not escaped a lot of myths and inaccuracies from media hype. Victims are not sure whether or not to pay a ransom demand without fully understanding the lurking consequences. In this paper, we present a ransomware classification framework based on file-deletion and file-encryption attack structures that provides a deeper comprehension of potential flaws and inadequacies exhibited in ransomware. We formulate a threat and attack model representative of a typical ransomware attack process from which we derive the ransomware categorization framework based on a proposed classification algorithm. The framework classifies the virulence of a ransomware attack to entail the overall effectiveness of potential ways of recovering the attacked data without paying the ransom demand as well as the technical prowess of the underlying attack structures. Results of the categorization, in increasing severity from CAT1 through to CAT5, show that many ransomwares exhibit flaws in their implementation of encryption and deletion attack structures which make data recovery possible without paying the ransom. The most severe categories CAT4 and CAT5 are better mitigated by exploiting encryption essentials while CAT3 can be effectively mitigated via reverse engineering. CAT1 and CAT2 are not common and are easily mitigated without any decryption essentials.

Soumis à arXiv le 21 Fév. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.