The mean free path of ionizing photons at 5 < z < 6: evidence for rapid evolution near reionization
Auteurs : George D. Becker, Anson D'Aloisio, Holly M. Christenson, Yongda Zhu, Gábor Worseck, James S. Bolton
Résumé : The mean free path of ionizing photons, $\lambda_{\rm mfp}$, is a key factor in the photoionization of the intergalactic medium (IGM). At $z \gtrsim 5$, however, $\lambda_{\rm mfp}$ may be short enough that measurements towards QSOs are biased by the QSO proximity effect. We present new direct measurements of $\lambda_{\rm mfp}$ that address this bias and extend up to $z \sim 6$ for the first time. Our measurements at $z \sim 5$ are based on data from the Giant Gemini GMOS survey and new Keck LRIS observations of low-luminosity QSOs. At $z \sim 6$ we use QSO spectra from Keck ESI and VLT X-Shooter. We measure $\lambda_{\rm mfp} = 9.09^{+1.28}_{-1.60}$ proper Mpc and $0.75^{+0.65}_{-0.45}$ proper Mpc (68% confidence) at $z = 5.1$ and 6.0, respectively. The results at $z = 5.1$ are consistent with existing measurements, suggesting that bias from the proximity effect is minor at this redshift. At $z = 6.0$, however, we find that neglecting the proximity effect biases the result high by a factor of two or more. Our measurement at $z = 6.0$ falls well below extrapolations from lower redshifts, indicating rapid evolution in $\lambda_{\rm mfp}$ over $5 < z < 6$. This evolution disfavors models in which reionization ended early enough that the IGM had time to fully relax hydrodynamically by $z = 6$, but is qualitatively consistent with models wherein reionization completed at $z = 6$ or even significantly later. Our mean free path results are most consistent with late reionization models wherein the IGM is still 20% neutral at $z = 6$, although our measurement at $z = 6.0$ is even lower than these models prefer.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.