Probing the temperature gradient in the core boundary layer of stars with gravito-inertial modes: the case of KIC$\,$7760680
Auteurs : M. Michielsen, C. Aerts, D. M. Bowman
Résumé : Aims: We investigate the thermal and chemical structure in the near-core region of stars with a convective core by means of gravito-inertial modes. We do so by determining the probing power of different asteroseismic observables and fitting methodologies. We focus on the case of the B-type star KIC$\,$7760680, rotating at a quarter of its critical rotation velocity. Methods: We compute grids of 1D stellar structure and evolution models for two different prescriptions of the temperature gradient and mixing profile in the near-core region. We determine which of these prescriptions is preferred according to the prograde dipole modes detected in 4-yr $\textit{Kepler}$ photometry of KIC$\,$7760680. We consider different sets of asteroseismic observables and compare the outcomes of the regression problem for a $\chi^2$ and Mahalanobis Distance merit function, where the latter takes into account realistic uncertainties for the theoretical predictions and the former does not. Results: Period spacings of modes with consecutive radial order offer a better diagnostic than mode periods or mode frequencies for asteroseismic modelling of stars revealing only high-order gravito-inertial modes. We find KIC$\,$7760680 to reveal a radiative temperature gradient in models with convective boundary mixing, but less complex models without such mixing are statistically preferred for this rotating star, revealing extremely low vertical envelope mixing. Conclusions: Our results strongly suggest the use of measured individual period spacing values for modes of consecutive radial order as an asteroseismic diagnostic for stellar modelling of B-type pulsators with gravito-inertial modes.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.