What's Your Value of Travel Time? Collecting Traveler-Centered Mobility Data via Crowdsourcing
Auteurs : Cristian Consonni, Silvia Basile, Matteo Manca, Ludovico Boratto, André Freitas, Tatiana Kovacikova, Ghadir Pourhashem, Yannick Cornet
Résumé : Mobility and transport, by their nature, involve crowds and require the coordination of multiple stakeholders - such as policy-makers, planners, transport operators, and the travelers themselves. However, traditional approaches have been focused on time savings, proposing to users solutions that include the shortest or fastest paths. We argue that this approach towards travel time value is not centered on a traveler's perspective. To date, very few works have mined data from crowds of travelers to test the efficacy and efficiency of novel mobility paradigms. In this paper, we build upon a different paradigm of worthwhile time in which travelers can use their travel time for other activities; we present a new dataset, which contains data about travelers and their journeys, collected from a dedicated mobile application. Each trip contains multi-faceted information: from the transport mode, through its evaluation, to the positive and negative experience factors. To showcase this new dataset's potential, we also present a use case, which compares corresponding trip legs with different transport modes, studying experience factors that negatively impact users using cycling and public transport as alternatives to cars. We conclude by discussing other application domains and research opportunities enabled by the dataset.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.