Finding Motifs in Knowledge Graphs using Compression
Auteurs : Peter Bloem
Résumé : We introduce a method to find network motifs in knowledge graphs. Network motifs are useful patterns or meaningful subunits of the graph that recur frequently. We extend the common definition of a network motif to coincide with a basic graph pattern. We introduce an approach, inspired by recent work for simple graphs, to induce these from a given knowledge graph, and show that the motifs found reflect the basic structure of the graph. Specifically, we show that in random graphs, no motifs are found, and that when we insert a motif artificially, it can be detected. Finally, we show the results of motif induction on three real-world knowledge graphs.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.