Robust decision-making under risk and ambiguity
Auteurs : Maximilian Blesch, Philipp Eisenhauer
Résumé : Economists often estimate economic models on data and use the point estimates as a stand-in for the truth when studying the model's implications for optimal decision-making. This practice ignores model ambiguity, exposes the decision problem to misspecification, and ultimately leads to post-decision disappointment. Using statistical decision theory, we develop a framework to explore, evaluate, and optimize robust decision rules that explicitly account for estimation uncertainty. We show how to operationalize our analysis by studying robust decisions in a stochastic dynamic investment model in which a decision-maker directly accounts for uncertainty in the model's transition dynamics.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.