A Hierarchical Transformation-Discriminating Generative Model for Few Shot Anomaly Detection
Auteurs : Shelly Sheynin, Sagie Benaim, Lior Wolf
Résumé : Anomaly detection, the task of identifying unusual samples in data, often relies on a large set of training samples. In this work, we consider the setting of few-shot anomaly detection in images, where only a few images are given at training. We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image. We further enhance the representation of our model by using image transformations and optimize scale-specific patch-discriminators to distinguish between real and fake patches of the image, as well as between different transformations applied to those patches. The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions. We demonstrate the superiority of our method on both the one-shot and few-shot settings, on the datasets of Paris, CIFAR10, MNIST and FashionMNIST as well as in the setting of defect detection on MVTec. In all cases, our method outperforms the recent baseline methods.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.