NLP is Not enough -- Contextualization of User Input in Chatbots
Auteurs : Nathan Dolbir, Triyasha Dastidar, Kaushik Roy
Résumé : AI chatbots have made vast strides in technology improvement in recent years and are already operational in many industries. Advanced Natural Language Processing techniques, based on deep networks, efficiently process user requests to carry out their functions. As chatbots gain traction, their applicability in healthcare is an attractive proposition due to the reduced economic and people costs of an overburdened system. However, healthcare bots require safe and medically accurate information capture, which deep networks aren't yet capable of due to user text and speech variations. Knowledge in symbolic structures is more suited for accurate reasoning but cannot handle natural language processing directly. Thus, in this paper, we study the effects of combining knowledge and neural representations on chatbot safety, accuracy, and understanding.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.