Design and Prototype Implementation of a Blockchain-Enabled LoRa System With Edge Computing
Auteurs : Lu Hou, Kan Zheng, Zhiming Liu, Xiaojun Xu
Résumé : Efficiency and security have become critical issues during the development of the long-range (LoRa) system for Internet-of-Things (IoT) applications. The centralized work method in the LoRa system, where all packages are processed and kept in the central cloud, cannot well exploit the resources in LoRa gateways and also makes it vulnerable to security risks, such as data falsification or data loss. On the other hand, the blockchain has the potential to provide a decentralized and secure infrastructure for the LoRa system. However, there are significant challenges in deploying blockchain at LoRa gateways with limited edge computing abilities. This article proposes a design and implementation of the blockchain-enabled LoRa system with edge computing by using the open-source Hyperledger Fabric, which is called as HyperLoRa. According to different features of LoRa data, a blockchain network with multiple ledgers is designed, each of which stores a specific kind of LoRa data. LoRa gateways can participate in the operations of the blockchain and share the ledger that keep the time-critical network data with small size. Then, the edge computing abilities of LoRa gateways are utilized to handle the join procedure and application packages processing. Furthermore, a HyperLoRa prototype is implemented on embedded hardware, which demonstrates the feasibility of deploying the blockchain into LoRa gateways with limited computing and storage resources. Finally, various experiments are conducted to evaluate the performances of the proposed LoRa system.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.