Quantum Portfolio Optimization with Investment Bands and Target Volatility
Auteurs : Samuel Palmer, Serkan Sahin, Rodrigo Hernandez, Samuel Mugel, Roman Orus
Résumé : In this paper we show how to implement in a simple way some complex real-life constraints on the portfolio optimization problem, so that it becomes amenable to quantum optimization algorithms. Specifically, first we explain how to obtain the best investment portfolio with a given target risk. This is important in order to produce portfolios with different risk profiles, as typically offered by financial institutions. Second, we show how to implement individual investment bands, i.e., minimum and maximum possible investments for each asset. This is also important in order to impose diversification and avoid corner solutions. Quite remarkably, we show how to build the constrained cost function as a quadratic binary optimization (QUBO) problem, this being the natural input of quantum annealers. The validity of our implementation is proven by finding the optimal portfolios, using D-Wave Hybrid and its Advantage quantum processor, on portfolios built with all the assets from S&P100 and S&P500. Our results show how practical daily constraints found in quantitative finance can be implemented in a simple way in current NISQ quantum processors, with real data, and under realistic market conditions. In combination with clustering algorithms, our methods would allow to replicate the behaviour of more complex indexes, such as Nasdaq Composite or others, in turn being particularly useful to build and replicate Exchange Traded Funds (ETF).
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.