Deep reinforcement learning on a multi-asset environment for trading

Auteurs : Ali Hirsa, Joerg Osterrieder, Branka Hadji-Misheva, Jan-Alexander Posth

arXiv: 2106.08437v1 - DOI (q-fin.TR)
Licence : CC BY-NC-ND 4.0

Résumé : Financial trading has been widely analyzed for decades with market participants and academics always looking for advanced methods to improve trading performance. Deep reinforcement learning (DRL), a recently reinvigorated method with significant success in multiple domains, still has to show its benefit in the financial markets. We use a deep Q-network (DQN) to design long-short trading strategies for futures contracts. The state space consists of volatility-normalized daily returns, with buying or selling being the reinforcement learning action and the total reward defined as the cumulative profits from our actions. Our trading strategy is trained and tested both on real and simulated price series and we compare the results with an index benchmark. We analyze how training based on a combination of artificial data and actual price series can be successfully deployed in real markets. The trained reinforcement learning agent is applied to trading the E-mini S&P 500 continuous futures contract. Our results in this study are preliminary and need further improvement.

Soumis à arXiv le 15 Jui. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.