Moving in a 360 World: Synthesizing Panoramic Parallaxes from a Single Panorama

Auteurs : Ching-Yu Hsu, Cheng Sun, Hwann-Tzong Chen

Résumé : We present Omnidirectional Neural Radiance Fields (OmniNeRF), the first method to the application of parallax-enabled novel panoramic view synthesis. Recent works for novel view synthesis focus on perspective images with limited field-of-view and require sufficient pictures captured in a specific condition. Conversely, OmniNeRF can generate panorama images for unknown viewpoints given a single equirectangular image as training data. To this end, we propose to augment the single RGB-D panorama by projecting back and forth between a 3D world and different 2D panoramic coordinates at different virtual camera positions. By doing so, we are able to optimize an Omnidirectional Neural Radiance Field with visible pixels collecting from omnidirectional viewing angles at a fixed center for the estimation of new viewing angles from varying camera positions. As a result, the proposed OmniNeRF achieves convincing renderings of novel panoramic views that exhibit the parallax effect. We showcase the effectiveness of each of our proposals on both synthetic and real-world datasets.

Soumis à arXiv le 21 Jui. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.