The decline of disruptive science and technology
Auteurs : Michael Park, Erin Leahey, Russell Funk
Résumé : Theories of scientific and technological change view discovery and invention as endogenous processes, wherein prior accumulated knowledge enables future progress by allowing researchers to, in Newton's words, "stand on the shoulders of giants". Recent decades have witnessed exponential growth in the volume of new scientific and technological knowledge, thereby creating conditions that should be ripe for major advances. Yet contrary to this view, studies suggest that progress is slowing in several major fields of science and technology. Here, we analyze these claims at scale across 6 decades, using data on 45 million papers and 3.5 million patents from 6 large-scale datasets. We find that papers and patents are increasingly less likely to break with the past in ways that push science and technology in new directions, a pattern that holds universally across fields. Subsequently, we link this decline in disruptiveness to a narrowing in the use of prior knowledge, allowing us to reconcile the patterns we observe with the "shoulders of giants" view. We find that the observed declines are unlikely to be driven by changes in the quality of published science, citation practices, or field-specific factors. Overall, our results suggest that slowing rates of disruption may reflect a fundamental shift in the nature of science and technology.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.