The Price of Diversity
Auteurs : Hari Bandi, Dimitris Bertsimas
Résumé : Systemic bias with respect to gender, race and ethnicity, often unconscious, is prevalent in datasets involving choices among individuals. Consequently, society has found it challenging to alleviate bias and achieve diversity in a way that maintains meritocracy in such settings. We propose (a) a novel optimization approach based on optimally flipping outcome labels and training classification models simultaneously to discover changes to be made in the selection process so as to achieve diversity without significantly affecting meritocracy, and (b) a novel implementation tool employing optimal classification trees to provide insights on which attributes of individuals lead to flipping of their labels, and to help make changes in the current selection processes in a manner understandable by human decision makers. We present case studies on three real-world datasets consisting of parole, admissions to the bar and lending decisions, and demonstrate that the price of diversity is low and sometimes negative, that is we can modify our selection processes in a way that enhances diversity without affecting meritocracy significantly, and sometimes improving it.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.