Automated News Summarization Using Transformers
Auteurs : Anushka Gupta, Diksha Chugh, Anjum, Rahul Katarya
Résumé : The amount of text data available online is increasing at a very fast pace hence text summarization has become essential. Most of the modern recommender and text classification systems require going through a huge amount of data. Manually generating precise and fluent summaries of lengthy articles is a very tiresome and time-consuming task. Hence generating automated summaries for the data and using it to train machine learning models will make these models space and time-efficient. Extractive summarization and abstractive summarization are two separate methods of generating summaries. The extractive technique identifies the relevant sentences from the original document and extracts only those from the text. Whereas in abstractive summarization techniques, the summary is generated after interpreting the original text, hence making it more complicated. In this paper, we will be presenting a comprehensive comparison of a few transformer architecture based pre-trained models for text summarization. For analysis and comparison, we have used the BBC news dataset that contains text data that can be used for summarization and human generated summaries for evaluating and comparing the summaries generated by machine learning models.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.