Using Biological Variables and Social Determinants to Predict Malaria and Anemia among Children in Senegal

Auteurs : Boubacar Sow, Hiroki Suguri, Hamid Mukhtar, Hafiz Farooq Ahmad

Licence : CC BY 4.0

Résumé : Integrating machine learning techniques in healthcare becomes very common nowadays, and it contributes positively to improving clinical care and health decisions planning. Anemia and malaria are two life-threatening diseases in Africa that affect the red blood cells and reduce hemoglobin production. This paper focuses on analyzing child health data in Senegal using four machine learning algorithms in Python: KNN, Random Forests, SVM, and Na\"ive Bayes. Our task aims to investigate large-scale data from The Demographic and Health Survey (DHS) and to find out hidden information for anemia and malaria. We present two classification models for the two blood disorders using biological variables and social determinants. The findings of this research will contribute to improving child healthcare in Senegal by eradicating anemia and malaria, and decreasing the child mortality rate.

Soumis à arXiv le 08 Aoû. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.